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Abstract

This paper presents a procedure for estimation of the Kalman filter gain from output residuals.
The system state space model is assumed to be known, but the process and noise covariances are
unknown. The propomd procedure consists of three basic steps. First, the output residuals are
computed from the given model and a given set of input-output data. Second, a linear regression
model for this part of the response is computed by a least-squares solution. Third, the Kalman

filter gain is then estimated from the coefficients of this model. Numerical results using
experimental data are presented to illustrate the validity of the developed procedure.

Introduction

A state space model of a linear system describes the system input and output via a quantity
called the state vector. There is a class of controllers that u_s the state information to compute the
control input. However, the state vector itself is typically not accessible for direct measurement. A
state estimator, also known as an observer, can be used to provide an estimate of the system state
from input and output measurements.

In the presence of process and measurement noises, under ideal conditions, an optimal
observer is the Kalman filter. The Kalman filtering problem has been studied for several decades.
To compute the Kalman filter gain, the system model must be known, and the individual process
and measurement noise covariances must also be known. In practice, these are somewhat

restricted requirements, since neither the system nor the noise characteristics can be known exactly.
Nevertheless, a mathematical model of the system can be derived analytically, or experimentally
from input-output measurement data by a system identification method. An estimate of the
measurement noise covariance may be obtained by examining the response of the sensor devices.
The process noise covariances, however, is almost impossible to be obtained by direct

measurement and some guess work is required.
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it is thus difficult to determine accurately the individual process and measurement noises
characteristics. But, collectively, their information is present in the system input-output data. It is

the purpose of this paper to formulate a procedure to estimate the Kalman filter gain directly from
knowledge of the system and input-output data without the need to identify the process and
measurement noise covariances individually. The problem of identifying both the system and the
Kalman filter gain is studied in Refs. 1-5. in practice, due to the presence of other factors such as
disturbances, non-linearities, non-whiteness of the process and measurement noises, etc.., the

resulting identified filter is not the Kalman filter. In such a case, the identified filter is simply an

observer that is computed from input-output data that minimizes the filter residual in a least-squares
sense.

The outline of this paper is the following. First, a mathematical statement of the problem is
presented. The main section that follows formulates a least-squares solution for computing the
coefficients of the model that describes the stochastic portion of the response. The Kalman filter
gain is then estimated from these coefficients. The derivation is done in the time domain. For

better understanding of the formulation, an interpretation in the z-domain is also provided.
Numerical examples are given to illustrate the method proposed in this paper.

Statement of the Problem

Consider a linear discrete multivariable system in state space format

x(k + !) = Ax(k) + Bu(k) + wl(k)

y(k) = Cx(k) + w2(k)
(1)

The process noise wl(k) and measurement noise w2(k) are two statistically independent, zero-

mean, stationary white noise processes. It is known from Kalman filter theory that there exists an
optimal filter for the above system of the form

._(k + 1) = A_(k) + Bu(k) + Kc(k)

._(k) = C2(k) + Du(k) (2)

where e.(k) is a white ,sequence of the Kalman filter residual,

e(k) = y(k) - _(k)

The filter gain K is a function of the system parameters and the process and measurement noise

covariances. Suppose that a set of input-output data of the system given in Eq. (1) is available in u
and y as

U = [u(O) u(l)

y =[y(O) y(l)

(3)

The objective of the problem is to estimate the Kalman filter gain K from a given set of data. The

system matrices A, B, C, D are assumed to be known. The statistical properties of the noises in the
system, however, are assumed not known.
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Mathematical Formulation

For simplicity of presentation, this .section is divided into various sub-sections, each will deal

with a specific aspect of the formulation. The problem is formulated in the following basic steps.
First, since the system parameters are assumed known, it is possible to compute the deterministic
and stochastic portions of the response for the given set of input data. This step will simplify the
subsequent mathematics. Next, a least-squares solution for computing the coefficients of the
model that describes the stochastic portion of the response is formulated. Finally, the Kalman filter

gain is estimated from these coefficients.

I. Deterministic and Stochastic Portions of the Response

First, the mathematical problem defined in the previous section can be simplified considerably

by observing that it is possible to partition the Kalman filter model into two parts as

2,(k + 1) = A_,(k) + Bu(k)

y, (k ) = CYq (k ) + Du(k )
(4)

and

-_2(k + 1) = Afc2(k) + Ke(k)

y2(k ) = Cfc2(k ) + e(k )
(5)

where ._(k) =._,(k)+ J22(k) and y(k)=y_(k)+y2(k). The quantities ._,(k) and y_(k) are portions

of the state and output, respectively, caused by the known deterministic input u(k). The quantities

£2(k) and y2(k) are portions of the state and output caused by the unknown stochastic input e(k).

Assuming zero initial conditions, ._1(0) = 0, for the given set of input-output sequence, the
deterministic and stochastic portions of the output can be easily computed. To see this, note that

y,(k)can be easily found from the known values of A, B, C, D and u(k) as

k

y, (k) = _ CA'-'Bu(k - i) + Du(k) (6)
i=l

The parameters Y(i) = CN-'B in the above expression are known as the Markov parameters of the

system. Knowing yl(k), the stochastic portion of the output, y2(k), can be computed from

y2(k ) = y(k ) - yl (k ) (7)

Hence, the mathematical problem reduces to that of finding K from Eq. (5), provided that A, C, and

y2(k) are known. In this paper, the stochastic portion of the output, y2(k), is also referred to as

output residuals.

2. Computation of a Model for the Stochastic Portion of the Response

A procedure to compute a model for the stochastic portion of the response given in Eq. (5) is
presented in this section. Equation (5) can al_ be re-written as

3



_2(k + l) = (A- KC)_2(k)+ Ky_(k)

y2(k)= C_2(k)+ e(k) (8)

Assuming zero initial conditions, ,_2(0) = 0, from Eq. (8),

k

y_(k) = y C(A - rc)'-' Ky_(k-i)+ e(k) (9)
i=l

For simplicity of notation, define the parameters

otk =C(A-KC)_-'K , k = 1, 2 ..... p (10)

The matrix A - KC is the Kalman filter system matrix, which is known to be asymptotically stable.
Hence, for .some sufficiently large value of p,

(A-KC)'-' ={) , i> p (11)

Equation (9) can then be approximated by a finite .set of parameters al, o_2..... ap as

y2(k) = _ ot,y2(k - i)+ t(k) (12)
i=l

Writing Eq. (12) in matrix form for the given .set of data

where

y=aY+c (13)

.-.

y=[y(0) y(l)---y(p) y(p+l).--y(N)]

"y2(0) y2(l) -.- Y2(P) Y2(P+I) ... y2(N)

JY2(()) "'" y2(p-l) y2(p-2).-, y2(N-1)

"'. : : : i

y2(0) y2(1) ... y2(N - p).J

e=[t_(0) t(l)---t(p) t(p+l)-.-t(N)]

The residual time history of the Kalman filter is known to be minimized and orthogonal to the data
.sequence. To obtain an estimation of the Kalman filter with a finite data record, we compute a by
the least-squares solution,

a : yY÷ (14)
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where the superscript + denotes the pseudo-inverse. The parameter matrix a contains the
coefficients for a model of the stochastic portion of the response from which the Kalman filter gain

K can be estimated. This is shown in the following section.

3. Estimation of the Kalman Filter Gain

Finally, the filter gain K can be computed from the above least-squares solution for a by the

following procedure. First define the Kalman filter gain Markov parameters

fit=CA k-'K , k=l, 2 ..... p (15)

Making use of the definitions of cz_ and flk given in Eq. (10) and Eq. (15), the parameters

ill, f12 ..... fl_, can be computed from a_, a2 ..... ap by the recursive equation

k-I

/_1k = a k + y_,/__,a_ , k = 1, 2 ..... p (16)
i=1

Since A and C are known, the gain matrix K can now be wived from

K: (V'V)-'V%,

where V is an observability matrix from A and C, and Yx is a matrix formed by the parameters

flk = CAt-tK, k = I, 2 ..... p computed in Eq. (16).

CA CAK f12

V= . , v,c= i =

p-, [CAP-IKj p

Z-Domain Interpretation

This section provides an explanation of the above time-domain derivation by examining the

equations in the z-domain. First, it is of interest to examine various input-output description in the
z-domain. The results will then be specialized for the problem considered in this paper.

I. Input-Output Models in the Z-Domain

Assuming that the system in Eq. (2) is asymptotically stable, the system input-output
relationship can be written in terms of the Kalman filter as

q q

y(k) = y CA'-'Bu(k - i) + Du(k) + _.CA'-tKe(k - i) + e(k)
i=l i=1

(18)

where the order of the linear difference equation, q, is sufficiently large such that A k is negligibly

small for k > q. Taking the z-transforms of both sides of Eq. (18) yields
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Y(z) = M(z)U(z) + N(z)E(z) (19)

where the transfer functions M(z) and N(z) are given as

q q

M(z) = _ CA'-'Bz-' + D , N(z) = _.CA'-'Kz-' +/
i=1 i=1

Note that the coefficients in M(z) are the Markov parameters of the system, and the coefficients in

N(z) are the Kalman filter gain Markov parameters di_ussed previously. Together they contain

information about the system and the Kalman filter. The z-transfer functions of the deterministic

and stochastic parts of the response are Y, (z) and Y2(Z), respectively

Y,(z) = M(z)U(z) , V2(z) = N(z)E(z) (20)

Y(z) = Y, (z) + Y2(z)

On the other hand, Eq. (2) can also be re-written as

_(k + 1) = (A - KC)._(k)+ (B - KO)u(k)+ Ky(k)

y(k) = Cfc(k) + Du(k) + e.(k) (21)

which yields the following input-output relationship

r •

y(k)-_C(A-KC)'-lKy(k-i)=Du(k)+ _C(A-KC)'-I(B-KD)u(k-i)+e(k) (22)
i=l i=1

where the order of the linear difference equation, r, is sufficiently large such that (A - KC) k is

negligibly small for k > r. Taking the z-transforms of both sides of Eq. (22) yields

P(z)Y(z) = Q(z)U(z) + E(z) (23)

where

P(z)= ! - ___C(A - KC)'-' Kz-' = I - ___a i z-'
i=l i=1

O(z)= D+ _.C(A- KC)'-'(B- KD)z-'
i=l

M(z) = P(z)-' O(z) , N(z) = P(z) -_ (24)

A proof of the above relation is provided in the appendix. The significance of the above relations
is that if the coefficients of P(z) and Q(z) are known, then M(z) and N(z), which characterize the

Comparing Eq. (19) to Eq. (23) suggests that



systemandtheKalmanfilter, canbecomputed,in fact,knowledgeof thecoefficientsof M(z) and
N(z) is sufficient to compute a state space model of the system (A, B, C, D) and the Kalman filter

gain K. The problem of identification of the coefficients of P(z) and Q(z) for the purpose of
identifying a state space model and the Kalman filter gain is treated in Refs. 1-3.

2. A Model for the Stochastic Portion of the Response in the Z-Domain

In the present case, since the system model is assumed to be known, the problem is

considerably simplified. The coefficients of P(z) can be determined directly from A(z) which is
the linear difference model for the stochastic part of the output is given in Eq. (8).

A(z)V2(z)= E(z) (25)

where
P P

A(z) = ! - _., C(A - KC)'-' K z-' = I - _. a, z-'
i=l i=1

Compare A(z) with P(z) in Eq. (23) immediately yields A(z) = P(z), hence

N(z) = P(z) -I = A(z) -I (26)

Equation (26) states that N(z), from which the Kalman filter gain K can be computed, can be

obtained by inverting the transfer function A(z) or P(z). Instead of direct inversion of the

polynomial A(z), the coefficients of N(z) can be computed from the relation A(z)N(z) = I, which

is simply

.... ÷a,z-,÷a,z ....

Equating like powers of -'z , i= 1, 2 .... and solving for the coefficients fl_, i=l, 2 ....

immediately yields the same result as given in Eq. (16), e.g.,

fl = al

1_2 : a2 + al]_l

Experimental Results

The developed procedure is applied to experimental data of a truss structure at NASA Langley
Research Center partially shown in Fig. 1. The L-shaped structure consists of nine bays on its
vertical section, and one bay on its horizontal section, extending 90 inches and 20 inches,

respectively. The shorter section is clamped to a steel plate which is rigidly attached to the wall.
The system has two air jet thruster inputs, and two accelerometer outputs. For identification, the
structure is excited using random inputs to both thrusters. The input-output signals are sampled at

250 Hz. A data record of 2,000 points is used for identification.



First,a 26-thorderstatespacemodelof thesystcmandits associatedobserver/filtergainare
identifiedbytheObserver/KalmanFiher Identificationalgorithm(OKID)3with anassumedorder
of 40. Since the retained system and filter model is only of 26-th order, the resultant residual of

the reduced order filter is not necessarily minimized or white. This is due to the singular value
truncation step during realization to obtain a reduced system and filter model of 26-th order. The

procedure developed in this paper is then used to identify an improved filter gain, keeping the
OKID-identified system model the same.

ORIGINAL PAGE IS
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Figure 1: Truss structure test configuration

To verify that the new observer gain is in fact an improved one, the auto-correlation of the

filter residuals at different time shifts for the first and second outputs are shown in Figs. 2 and 3,
respectively. First, when compared with the original residuals, the norms of the filter residuals are

reduced with the improved filter gain. This is indicated by the value of the auto-correlation
corresponding to the number of time shift being equal to zero. Second, observe that in both cases,

there is an general improvement in the whiteness of the filter residual with the improved gain,
where the auto-correlation function is used as a whiteness measurement.

It is important to view the results in light of the limitations in the application of the method.
First, only for a linear system with white process and measurement noises, the Kalman filter

residual is minimized and white. In practice, however, this is not the case as any deviations from
the ideal assumptions will reflect in the identification results. Second, the computation procedure
requires that the true system model be known. This is a rather ideal assumption that is not satisfied
in practice. Third, because the Kalman filter describes a stochastic process, even when the
conditions outlined above are met, one can only identify the true Kalman filter gain with an infinite



setof data samples, in the example shown, the system considered here is an actual truss structure,
the data in the computation is actual test data, the state space model used is an experimentally
identified one, and the data record is only 2000 samples long. The example illustrates the use of

the method in providing an improved estimation of the Kalman filter gain from experimental data,
assuming that an experimentally identified state space model is in fact a valid representation of the
system.
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Figure 2: Auto-correlation of filter residual for the first output using
original and improved filter gains.

Auto-

Correlalion
1

Residual

No. 2
0.5

2sf2
1.5 ....

........ Original

-- Whilened

-0.5
0 2 4 6 8 10

Number el Time Shills

Figure 3: Auto-correlation of filter residual for the second output using
original and improved filter gains.

The identified filter can be used to describe the system input-output map. An overlay of the
actual responses of the test structure, and the estimated responses provided by the filter is shown in
Figs. 4 and 5 for each of the two outputs, respectively. The solid curves represent the actual
measured responses of the truss structure whereas dashed curves represent the estimated

responses. The two curves in each figure practically overlap. This reveals that the identified
observer adequately describes the input-output relationship of the system. In fact, the difference
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between the actual response and the estimated response is precisely the filter residual which is
discussed earlier in Figs. 2 and 3 for each of the two outputs, respectively.
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Figure 4: Actual and reconstructed response using identified filter for the first output.
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Actual and reconstructed response using identified filter for the second output.

Concluding Remarks

This paper presents a procedure to estimate the Kalman filter gain from input-output
measurement data, assuming that the system parameters are known. The procedure consists of
three basic steps. First, the stochastic portion of the response is computed. Second, the

coefficients of a linear difference model for this portion of the response are estimated by a least
squares solution that minimizes the filter residual. Third, the Kalman filter gain is computed from
these model coefficients, in practice, due to the presence of other factors such as non-linearities,

unmodelled dynamics, etc.., the estimated filter gain is not necessarily the Kalman filter gain.
Nevertheless, the identified filter gain is optimal in that the resultant filter residual is minimized in
the least-squares sense for the given system and the given set of input-output data.
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Appendix

Statement of Proof:

Given the following polynomials

p(z)= i-_.C-A'-'Kz -_ , O(z)= D+ _ C'A_-_(B-KD)z -_ ,
i=l i=1

M(z) = _.CAi-IBz -i + D ,
/=1

q

N(z) = _.CA'-IKz -i + !
i=1

w

A =A-KC

(A.1)

where r and q are sufficiently large such that the truncation error is negligible,

-A=(A-KC)_=O, i>_r, A_=O, i>q (A.2)

It will be shown in the following that

M(z) = P(z) -I O(z) (A.3)

N(z) = P(z) -1 (A.4)

Proof."

First, for a stable system matrix A

,CAi-'Bz -_ = C(lz-' + Az -2 + A2z -3 + ...)B
i=1

= C(lz - A)-'B

Similarly,

i=l

N

_.,CA'-'Kz-' =C(lz-A)-IK
i=1

C-A'-'( B - KD)z -_ = C( Iz - A )-' ( B - KD)
i=1

Relation (A.4) can be shown first by making use of the initial assumption regarding the stability of

A and A in (A.2), the matrix inversion lemma, and the above equations,
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-I

=i +C(Iz-x- Kc)-'K
= I + C(tz - A)-IK

= 1 + _CA'-lKz -i = N(z)
i=1

To show the relation (A.3), consider the product P(z) -I Q(z),

Hence,

P(z) -1 Q(z) = D + C(Iz -

= D+C(Iz -

= D + C(Iz -

= D + C(lz -

= D + C(lz -

(A.5)

-_)-1 (B- KO)+ C(Iz - A)-' KO + C(lz- A)-' KC(lz- A )-' (B- KID)

A) -I KD + C[I +(Iz- A)-" KC](Iz- "A)-'(B- KD)

A )-I KO + C( iz - A )-' ( Iz - A + KC)(lz - -A)-' (B - KO)

A) -I KD+C(Iz- A)-'(B- KO)

A)-IB = M(z) (A.6)

Equation (A.3) is thus proved.
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